September 29, 2014

Kimia keramik


Tahukah kamu benda-benda yang terbuat dari keramik? Yup, banyak macamnya.. gelas, piring, vas bunga, mangkok, tempat lilin, dll banyak ditemukan dengan bentuk keramik. Mungkin kalian juga punya salah satunya di rumah. Saya adalah pengoleksi gelas dan mangkok keramik murah jika ada event-event seperti pameran pun pasar dadakan. By the way bus way, apaan sih keramik itu? masak ada sangkut pautnya dengan kimia? hehehe jangan salah mbak, mas... semua benda di alam ini tersusun atas unsur-unsur yang nangkring di Sistem Periodik Unsur (SPU) kimia, jadi jelas setiap benda ada sangkutannya dengan kimia, selalu. Bahkan zat-zat penyusun kentut kita, uffff 
:D

Keramik  dalam bahasa inggris ceramics, yunani keramos, ‘potter clay’, asal katanya berasal dari seni pembuatan tembikar, peralatan dari tanah liat. Sekarang, definisi keramik secara ilmiah adalah benda-benda yang dibuat dari bahan lunak dari alam yang dijadikan keras dengan cara pemanasan, nah dulu kalau mau bikin kerajinan tangan pasti bikin asbak dari lempung (soalnya yang paling mudah, hehehe). Material keramik termasuk non logam, senyawa inorganik, biasanya senyawa ikatan oksigen, karbon, nitrogen, boron dan silikon. Keramik pada industri tidak mesti berbentuk benda-benda seni. Contohnya saja pada keramik industri adalah pipa selokan, insulator listrik, bata tahan panas dan lainnya. 
Keramik industri dibuat dari bubuk yang telah diberi tekanan sedemikian rupa kemudian dipanaskan pada temperatur tinggi. Keramik tradisional seperti porcelain, ubin (keramik lantai) dan tembikar dibuat dari bubuk yang terdiri dari berbagai material seperti tanah liat (lempung), talc, silika dan faldspar. Akan tetapi, sebagian besar keramik industri dibentuk dari bubuk kimia khusus seperti silikon karbida, alumina dan barium titanate.
Material yang digunakan untuk membuat keramik ini biasanya digali dari perut bumi dan dihancurkan hingga menjadi bubuk. Produsen seringkali memurnikan bubuk ini dengan mencampurkannya dengan suatu larutan hingga terbantuk endapan pengotor. Kemudian endapan tadi disaring dan bubuk material keramik dipanaskan untuk menghilangkan impuritis dan air. Hasilnya, bubuk dengan tingkat kemurnian tinggi dan berukuran sekitar 1 µm (0.0001 cm).
Keramik dapat dibagi menjadi dua, yaitu :
  1. Keramik tradisional - Keramik tradisional yaitu keramik yang dibuat dengan menggunakan bahan alam, seperti kuarsa, kaolin, dll. Yang termasuk keramik ini adalah: barang pecah belah (dinnerware), keperluan rumah tangga (tile, bricks), dan untuk industri (refractory).
  2. Keramik halus (keramik industri) - Fine ceramics (keramik modern atau biasa disebut keramik teknik, advanced ceramic, engineering ceramic, techical ceramic) adalah keramik yang dibuat dengan menggunakan oksida-oksida logam atau logam, seperti: oksida logam (Al2O3, ZrO2, MgO,dll). Penggunaannya: elemen pemanas, semikonduktor, komponen turbin, dan pada bidang medis.

Sifat Keramik
Keramik memiliki sifat kimia, mekanik, fisika, panas, elektrik, dan magnetik yang membedakan mereka dari material lain seperti logam dan plastik. Industri keramik merubah sifat keramik dengan cara mengontrol jenis dan jumlah material yang digunakan untuk pembuatan.

A.    Sifat Kimia
Keramik industri sebagian besar adalah oksida (senyawa ikatan oksigen), akan tetapi ada juga senyawa carbida (senyawa ikatan karbon dan logam berat), nitrida (senyawa ikatan nitrogen), borida (senyawa ikatan boron) dan silida (senyawa ikatan silikon). Sebagai contoh, pembuatan keramik alumina menggunakan 85 sampai 99 persen aluminum oksida sebagai bahan utama dan dikombinasikan dengan berbagai senyawa kompleks secara kimia. Beberapa contoh senyawa kompleks adalah barium titanate (BaTiO3) dan zinc ferrite (ZnFe2O4). Material lain yang dapat disebut juga sebagai jenis keramik adalah berlian dan graphite dari karbon.
Keramik lebih resisten terhadap korosi dibanding plastik dan logam. Keramik biasanya tidak bereaksi dengan sebagian besar cairan, gas, aklali dan asam. Jenis-jenis keramik memiliki titik leleh yang tinggi dan beberapa diantaranya masih dapat digunakan pada temperatur mendekati titik lelehnya. Keramik juga stabil dalam waktu yang lama.

B.     Sifat Mekanik
Ikatan keramik dapat dibilang sangat kuat, dapat kita lihat dari kekakuan ikatan dengan mengukur kemampuan keramik menahan tekanan dan kelengkungan. Bend Strength atau jumlah tekanan yang diperlukan untuk melengkungkan benda biasanya digunakan untuk menentukan kekuatan keramik. Salah satu keramik yang keras adalah Zirconium dioxide yang memiliki bend strength mendekati senyawa besi. Zirconias (ZrO2) mampu mempertahankan kekuatannya hingga temperatur 900oC (1652oF), dan bahkan silikon carbida dan silikon nitrida dapat mempertahankan kekuatannya pada temperatur diatas 1400oC (2552oF). Material-material silikon ini biasanya digunakan pada peralatan yang memerlukan panas tinggi seperti bagian dari Gas-Turbine Engine. Walaupun keramik memiliki ikatan yang kuat dan tahan pada temperatur tinggi, material ini sangat rapuh dan mudah pecah bila dijatuhkan atau ketika dipanaskan dan didinginkan seketika.

C.     Sifat Fisik
Sebagian besar keramik adalah ikatan dari karbon, oksigen atau nitrogen dengan material lain seperti logam ringan dan semilogam. Hal ini menyebabkan keramik biasanya memiliki densitas yang kecil. Sebagian keramik yang ringan mungkin dapat sekeras logam yang berat. Keramik yang keras juga tahan terhadap gesekan. Senyawa keramik yang paling keras adalah berlian, diikuti boron nitrida pada urutan kedua dalam bentuk kristal kubusnya. Aluminum oksida dan silikon karbida biasa digunakan untuk memotong, menggiling, menghaluskan dan menghaluskan material-material keras lain.

D.    Sifat Panas
Sebagian besar keramik memiliki titik leleh yang tinggi, artinya walaupun pada temperatur yang tinggi material ini dapat bertahan dari deformasi dan dapat bertahan dibawah tekanan tinggi. Akan tetapi perubahan temperatur yang besar dan tiba-tiba dapat melemahkan keramik. Kontraksi dan ekspansi pada perubahan temperatur tersebutlah yang dapat membuat keramik pecah. Silikon karbida dan silikon nitrida lebih dapat bertahan dari kontraksi dan ekspansi pada perubahan temperatur tinggi daripada keramik-keramik lain. Oleh karena itu material ini digunakan pada bagian-bagian mesin seperti rotor pada turbin dalam mesin jet yang memiliki variasi perubahan temperatur yang ekstrim.

E.     Sifat Elektrik
Beberapa jenis keramik dapat menghantarkan listrik. Contohnya Chromium dioksida yang mampu menghantarkan listrik sama baiknya dengan sebagian besar logam. Jenis keramik lain seperti silikon karbida, kurang dapat menghantarkan listrik tapi masih dapat dikatakan sebagai semikonduktor. Keramik seperti aluminum oksida bahkan tidak menghantarkan listrik sama sekali. Beberapa keramik seperti porcelain dapat bertindak sebagai insulator (alat untuk memisahkan elemen-elemen pada sirkuit listrik agar tetap pada jalurnya masing-masing) pada temperatur rendah tapi dapat menghantarkan listrik pada temperatur tinggi.

F.      Sifat Magnetik
Keramik yang mengandung besi oksida (Fe2O3) dapat memiliki gaya magnetik mirip dengan magnet besi, nikel dan cobalt. Keramik berbasis besi oksida ini biasa disebut ferrite. Keramik magnetis lainnya adalah oksida-oksida nikel, senyawa mangan dan barium. Keramik ber-magnet biasanya digunakan pada motor elektrik dan sirkuit listrik dan dapat dibuat dengan resistensi tinggi terhadap demagnetisasi. Ketika elektron-elektron disejajarkan sedemikian rupa, keramik dapat menghasilkan medan magnet yang sangat kuat dan sukar demagnetisasi (menghilangkan medan magnet) dengan memecah barisan elektron tersebut.
Keramik industri dibuat dari bubuk yang telah diberi tekanan sedemikian rupa kemudian dipanaskan pada temperatur tinggi. Keramik tradisional seperti porcelain, ubin (keramik lantai) dan tembikar dibuat dari bubuk yang terdiri dari berbagai material seperti tanah liat (lempung), talc, silika dan faldspar. Akan tetapi, sebagian besar keramik industri dibentuk dari bubuk kimia khusus seperti silikon karbida, alumina dan barium titanate.
Material yang digunakan untuk membuat keramik ini biasanya digali dari perut bumi dan dihancurkan hingga menjadi bubuk. Produsen seringkali memurnikan bubuk ini dengan mencampurkannya dengan suatu larutan hingga terbantuk endapan pengotor. Kemudian endapan tadi disaring dan bubuk material keramik dipanaskan untuk menghilangkan impuritis dan air. Hasilnya, bubuk dengan tingkat kemurnian tinggi dan berukuran sekitar 1 mikrometer (0.0001 centimeter).

Bahan Baku Dasar
            Tiga bahan baku utama yang digunakan untuk membuat produk keramik klasik, atau ‘triaksial’, adalah lempung, feldspar dan pasir. Lempung adalah aluminium silikat hidrat yang tidak terlalu murni yang terbentuk sebagai hasil pelapukan dari batuan beku yang mengandung feldspar sebagai salah satu mineral asli yang penting. Reaksinya dapat dilukiskan sebagai berikut :
K2O.Al2SO3.6SiO2 + CO2 + 2H2O → K2CO3 + Al2O3.2SiO2.2H2O + 4SiO2
Ada sejumlah speises mineral yang disebut mineral lempung (clay mineral) yang mengandung terutama campuran kaolinit (Al2O3.2SiO2.2H2O), montmorilonit [(Mg,Ca)O.Al2O3.5SiO2.nH2O] dan ilit (K2O, MgO, Al2O3, SiO2.2H2O) masing-masing dalam berbagai kuantitas. Dari sudut pandang keramik, lempung berwujud plastik dan bias dibentuk bila cukup halus dan basah, kaku bila kering, dan kaca (vitreous) bila dibakar pada suhu yang cukup tinggi. Prosedur pembuatannya mengandalkan kepada sifat-sifat tersebut diatas.
            Di dalam lempung yang diperdagangkan, disamping mineral lempung terdapat pula feldspar, kuarsa dan berbagai ketidakmurnian seperti oksida-oksida besi, semuanya dalam jumlah yang beragam. Dalam hampir semua lempung yang digunakan di dalam industri keramik, mineral lempung dasar adalah kaolinit, walaupun lempung bentonit yang berdasarkan atas montmorilonit digunakan juga sedikit untuk memberikan sifat plastisitas yang sangat tinggi bila perlu. Sifat plastisitas ini sangat dipengaruhi oleh kondisi fisik lempung, dan sangat berbeda-beda pada berbagai jenis lempung. Lempung sangat beraneka ragam dalam sifat fisiknya, dan dalam kandungan ketidakmurniannya, sehingga biasanya harus ditingkatkan mutunya terlebih dahulu melalui prosedur benefisiasi.
            Ada tiga jenis feldspar yang umum, yaitu potas (K2O.Al2O3.SiO2), soda (NaO.Al2O3.6SiO2), batua gamping (CaO.Al2O3.6SiO2), yang semuanya dipakai dalam produk keramik. Feldspar sangat penting sebagai pemberi sifat fluks dalam formulasi keramik. Feldspar bias terdapat di dalam lempung hasil penambangan, atau bisa juga ditambahkan sesuai keperluan.
            Penyusun keramik yang ketiga yang penting adalah pasir atau flin (flint). Sifat-sifatnya yang penting dari segi industri keramik ditunjukkan pada table berikut :

Kaolinit
Feldspar
Pasir (flin)
Rumus
Plastisitas
Fusibilitas (keleburan)
Titik cair
Ciut pada pembakaran
Al2O3.2SiO2.2H2O
Plastik
Refraktori
1785oC
Sangat ciut
K2O.Al2O3.6SiO2
Non plastik
Perekat mudah lebur
1150oC
Lebur
SiO2
Non plastik
Refraktori
1710oC
Tidak ciut

Konversi Kimia
            Semua produk keramik dibuat dengan mencpurkan berbagai kuantitas bahan baku yang tersebut diatas, membentuknya dan memanaskannya sampai suhu pembakaran. Suhu ini mungkin hanya 700oC untuk beberapa jenis glasial luar, tetapi banyak pula vitrifikasi yang dilakukan pada suhu setinggi 2000oC. Pada suhu vitrifikasi terjad sejumlah reaksi, yang merupakan dasar kimia bagi konversi kimia.
1.      Dehidrasi, atau penguapan air kimia pada suhu 150 sampai 650oC.
2.      Kalsinasi, misalnya CaCO3 pada suhu 600 sampai 900oC.
3.      Oksidasi besi fero dan bahan organik pada suhu 350 sampai 900oC.
4.      Pembentukan silika pada suhu 900oC atau lebih
Beberapa diantara perubahan awal tersebut cukup sederhana, misalnya kalsinasi CaCO3 dan dehidrasi serta dekomposisi kaolinit. Reksi-reaksi lain, misalnya pembentukan silikat, cukup rumit dan berubah-ubah sesuai dengan suhu dan perbandingan penyusunnya.
Produk keramik hampir semua mempunyai sifat refraktori, artinya tahan terhadap panas, dan tingkat kerefraktorian dari suatu produk tertentu bergantung pada perbandingan kuantitas oksida refraktori terhadap oksida fluks didalamnya. Oksida refraktori yang terpenting adalah SiO2, Al2O3, CaO dan MgO, disamping ZrO2, TiO2, Cr2O3, serta BeO yang lebih jarang dipakai. Oksida fluks yang terpenting adalah Na2O, K2O, B2O3 dan SnO2, disamping fluorida yang juga digunakan dalam komposisi beberapa fluks tertentu.
Pewaris umum dalam semua produk keramik adalah lempung (biasanya kaolinit), dan karena itu reaksi kimia yang berlangsung pada pemansan lempung sangat penting artinya. Efek yang pertama dari panas ialah mendorong air hidrasi keluar; ini terjadi pada suhu 600 sampai 650oC dengan menyerap sejumlah besar kalor, meninggalkan suatu campuran amorf alumina dan silica, seperti terlihat dari penelitian sinar X.
Al2O3.2SiO2.2H2O → Al2O3 + 2SiO2 + 2H2O
Bahkan, sebagian besar alumina dapat diekstraksi dengan asam klorida pada tahap ini. Jika pemanasan dilanjutkan, alumina amorf tersebut berubah dengan cepat pada suhu 940oC menjadi alumina kristal, yaitu γ-alumina sambil mengeluarkan sejumlah besar kalor. Pada suhu yang sedikit lebih tinggi, mulai kira-kira 1000oC, alumina dan silica bergabung membentuk mulit (3Al2O3.2SiO2). Pada suhu yang lebih tinggi lagi, silika yang tersisa berubah menjadi kristobalit kristal. Jadi, keseluruhan reaksi fundamental yang terjadi pada pemanasan lempung adalah :
3(Al2O3.2SiO2.2H2O) → 3Al2O3.2SiO2 + 4SiO2 + 6 H2O

Trus, setahu ane... bahan2 yang disusun oleh silika itu termasuk di dalamnya lempung de el el,, bisa juga digunakan sebagai bahan baku zeolit Bro,, yang termasuk material cerdas karena porinya yang luar biasa besar dan kegunaannya yang mantafff buanget. Kalau ngomongin material cerdas nggak ada matinya deh, sekarang sudah ditemukan grafena, yang katanya katanya bisa menghasilkan listrik sendiri, weh weh weh, kimia nggak ada matinya yak.
Anyway,, sumber tulisan ini disini

Farixsantips